Prof. Jenn-Fang Chen / Department of Electrophysics

Quantum dots, DLTS spectroscopy of relaxed QDs and induced defeats, optical-controlled oscillator
This is a lab dedicated to the Molecular Beam Epitaxial growths of III-V compound semiconductor quantum-dot and quantum-well nanostructures with particular interests in their property transformation from coherently strained to relaxation in such nanostructures. We have developed several characterization techniques to analyze such variations such as Deep-level Transient Spectroscopy (DLTS), Admittance Spectroscopy, which can probe the electron emission times of these nanostructures and the induced defeat states as a function of sample depth. Figure 1 shows the DLTS emission spectra of defeat induced by the strain relaxation in the InAs QDs and, by a comparison with the TEM images we can identify their nature. Figure 2 shows a several-order magnitude elongation of the electron emission time from the InAs QDs as they change from coherently strained to strain relaxation. Figure 3 shows a red-shift of PL spectra as the InAs deposition thickness is increased and an abnormal blue-shift as the InAs thickness exceeded a critical thickness for strain relation, resulting in a bi-model co-existence of the QDs. Figure 4 shows the capacitance spectra of strongly confined QDs, which can be significantly modulated by light. We have implemented this in the applications of opticalcontrolled oscillator in which the oscillation frequency can be controlled by light intensity.

Fig. 3

Fig. 2

Fig. 1

