Prof. Yi Yang / Department of Electrophysics

String Theory, Gravity Theory, Field Theory

We are high energy theoretical physics research group. Our research focus on some string theory related topics. Currently, we are interested in two topics:

- 1. <u>Gauge/gravity correspondence</u> is a holographic duality between two theories at different space-time dimensions. One of the most important properties about this correspondence is strong-weak duality. We can use this property to understand a strongly-coupled theory by studying its weakly-coupled dual theory. Gauge/gravity correspondence has been applied to various physical systems:
- Construct holographic QCD models and study the phase structure of QCD at finite temperature and finite density, as well as external electromagnetic field.
- Study fluid/gravity correspondence to investigate the effects of external matter fields and higher order terms on the fluid dynamical equation.
- Using the method of Kerr/CFT duality to understand the black hole entropy in terms of microscopic entropy of its dual conformal field theory.
- Construct holographic models to study different strongly-coupled systems in condensed matter Theory, such as quantum Hall effect and topological insulators.
- 2. <u>String scattering amplitudes</u> is an important quantity to understand the symmetry of string theory. At certain limits, the symmetry of string amplitudes will simplified to be realized.
- In high energy, fixed angle limit, we find that there is a linear relations among different string amplitudes with the ratios explicitly calculated.
- In high energy, small angle limit (Regge), we find the string amplitudes can be expressed in terms of Appell functions, whose recurrence relations produce the relations among string amplitudes.
- For each string state, there is a string BCJ relation between s-t and t-u channels string amplitudes. In low energy limit, the string BCJ relation induces to the BCJ relations in gauge theory.